Copied to
clipboard

G = C14×C22⋊C4order 224 = 25·7

Direct product of C14 and C22⋊C4

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: C14×C22⋊C4, C233C28, C24.2C14, C2.1(D4×C14), C222(C2×C28), (C22×C14)⋊3C4, (C22×C4)⋊1C14, (C22×C28)⋊3C2, (C2×C14).50D4, C14.64(C2×D4), (C2×C28)⋊11C22, C23.5(C2×C14), C2.1(C22×C28), (C23×C14).1C2, C22.12(C7×D4), C14.29(C22×C4), (C2×C14).70C23, C22.4(C22×C14), (C22×C14).24C22, (C2×C4)⋊3(C2×C14), (C2×C14)⋊7(C2×C4), SmallGroup(224,150)

Series: Derived Chief Lower central Upper central

C1C2 — C14×C22⋊C4
C1C2C22C2×C14C2×C28C7×C22⋊C4 — C14×C22⋊C4
C1C2 — C14×C22⋊C4
C1C22×C14 — C14×C22⋊C4

Generators and relations for C14×C22⋊C4
 G = < a,b,c,d | a14=b2=c2=d4=1, ab=ba, ac=ca, ad=da, dbd-1=bc=cb, cd=dc >

Subgroups: 188 in 132 conjugacy classes, 76 normal (12 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C7, C2×C4, C2×C4, C23, C23, C23, C14, C14, C14, C22⋊C4, C22×C4, C24, C28, C2×C14, C2×C14, C2×C14, C2×C22⋊C4, C2×C28, C2×C28, C22×C14, C22×C14, C22×C14, C7×C22⋊C4, C22×C28, C23×C14, C14×C22⋊C4
Quotients: C1, C2, C4, C22, C7, C2×C4, D4, C23, C14, C22⋊C4, C22×C4, C2×D4, C28, C2×C14, C2×C22⋊C4, C2×C28, C7×D4, C22×C14, C7×C22⋊C4, C22×C28, D4×C14, C14×C22⋊C4

Smallest permutation representation of C14×C22⋊C4
On 112 points
Generators in S112
(1 2 3 4 5 6 7 8 9 10 11 12 13 14)(15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 46)(2 47)(3 48)(4 49)(5 50)(6 51)(7 52)(8 53)(9 54)(10 55)(11 56)(12 43)(13 44)(14 45)(15 67)(16 68)(17 69)(18 70)(19 57)(20 58)(21 59)(22 60)(23 61)(24 62)(25 63)(26 64)(27 65)(28 66)(29 91)(30 92)(31 93)(32 94)(33 95)(34 96)(35 97)(36 98)(37 85)(38 86)(39 87)(40 88)(41 89)(42 90)(71 106)(72 107)(73 108)(74 109)(75 110)(76 111)(77 112)(78 99)(79 100)(80 101)(81 102)(82 103)(83 104)(84 105)
(1 19)(2 20)(3 21)(4 22)(5 23)(6 24)(7 25)(8 26)(9 27)(10 28)(11 15)(12 16)(13 17)(14 18)(29 78)(30 79)(31 80)(32 81)(33 82)(34 83)(35 84)(36 71)(37 72)(38 73)(39 74)(40 75)(41 76)(42 77)(43 68)(44 69)(45 70)(46 57)(47 58)(48 59)(49 60)(50 61)(51 62)(52 63)(53 64)(54 65)(55 66)(56 67)(85 107)(86 108)(87 109)(88 110)(89 111)(90 112)(91 99)(92 100)(93 101)(94 102)(95 103)(96 104)(97 105)(98 106)
(1 96 46 83)(2 97 47 84)(3 98 48 71)(4 85 49 72)(5 86 50 73)(6 87 51 74)(7 88 52 75)(8 89 53 76)(9 90 54 77)(10 91 55 78)(11 92 56 79)(12 93 43 80)(13 94 44 81)(14 95 45 82)(15 100 67 30)(16 101 68 31)(17 102 69 32)(18 103 70 33)(19 104 57 34)(20 105 58 35)(21 106 59 36)(22 107 60 37)(23 108 61 38)(24 109 62 39)(25 110 63 40)(26 111 64 41)(27 112 65 42)(28 99 66 29)

G:=sub<Sym(112)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,46)(2,47)(3,48)(4,49)(5,50)(6,51)(7,52)(8,53)(9,54)(10,55)(11,56)(12,43)(13,44)(14,45)(15,67)(16,68)(17,69)(18,70)(19,57)(20,58)(21,59)(22,60)(23,61)(24,62)(25,63)(26,64)(27,65)(28,66)(29,91)(30,92)(31,93)(32,94)(33,95)(34,96)(35,97)(36,98)(37,85)(38,86)(39,87)(40,88)(41,89)(42,90)(71,106)(72,107)(73,108)(74,109)(75,110)(76,111)(77,112)(78,99)(79,100)(80,101)(81,102)(82,103)(83,104)(84,105), (1,19)(2,20)(3,21)(4,22)(5,23)(6,24)(7,25)(8,26)(9,27)(10,28)(11,15)(12,16)(13,17)(14,18)(29,78)(30,79)(31,80)(32,81)(33,82)(34,83)(35,84)(36,71)(37,72)(38,73)(39,74)(40,75)(41,76)(42,77)(43,68)(44,69)(45,70)(46,57)(47,58)(48,59)(49,60)(50,61)(51,62)(52,63)(53,64)(54,65)(55,66)(56,67)(85,107)(86,108)(87,109)(88,110)(89,111)(90,112)(91,99)(92,100)(93,101)(94,102)(95,103)(96,104)(97,105)(98,106), (1,96,46,83)(2,97,47,84)(3,98,48,71)(4,85,49,72)(5,86,50,73)(6,87,51,74)(7,88,52,75)(8,89,53,76)(9,90,54,77)(10,91,55,78)(11,92,56,79)(12,93,43,80)(13,94,44,81)(14,95,45,82)(15,100,67,30)(16,101,68,31)(17,102,69,32)(18,103,70,33)(19,104,57,34)(20,105,58,35)(21,106,59,36)(22,107,60,37)(23,108,61,38)(24,109,62,39)(25,110,63,40)(26,111,64,41)(27,112,65,42)(28,99,66,29)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,46)(2,47)(3,48)(4,49)(5,50)(6,51)(7,52)(8,53)(9,54)(10,55)(11,56)(12,43)(13,44)(14,45)(15,67)(16,68)(17,69)(18,70)(19,57)(20,58)(21,59)(22,60)(23,61)(24,62)(25,63)(26,64)(27,65)(28,66)(29,91)(30,92)(31,93)(32,94)(33,95)(34,96)(35,97)(36,98)(37,85)(38,86)(39,87)(40,88)(41,89)(42,90)(71,106)(72,107)(73,108)(74,109)(75,110)(76,111)(77,112)(78,99)(79,100)(80,101)(81,102)(82,103)(83,104)(84,105), (1,19)(2,20)(3,21)(4,22)(5,23)(6,24)(7,25)(8,26)(9,27)(10,28)(11,15)(12,16)(13,17)(14,18)(29,78)(30,79)(31,80)(32,81)(33,82)(34,83)(35,84)(36,71)(37,72)(38,73)(39,74)(40,75)(41,76)(42,77)(43,68)(44,69)(45,70)(46,57)(47,58)(48,59)(49,60)(50,61)(51,62)(52,63)(53,64)(54,65)(55,66)(56,67)(85,107)(86,108)(87,109)(88,110)(89,111)(90,112)(91,99)(92,100)(93,101)(94,102)(95,103)(96,104)(97,105)(98,106), (1,96,46,83)(2,97,47,84)(3,98,48,71)(4,85,49,72)(5,86,50,73)(6,87,51,74)(7,88,52,75)(8,89,53,76)(9,90,54,77)(10,91,55,78)(11,92,56,79)(12,93,43,80)(13,94,44,81)(14,95,45,82)(15,100,67,30)(16,101,68,31)(17,102,69,32)(18,103,70,33)(19,104,57,34)(20,105,58,35)(21,106,59,36)(22,107,60,37)(23,108,61,38)(24,109,62,39)(25,110,63,40)(26,111,64,41)(27,112,65,42)(28,99,66,29) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14),(15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,46),(2,47),(3,48),(4,49),(5,50),(6,51),(7,52),(8,53),(9,54),(10,55),(11,56),(12,43),(13,44),(14,45),(15,67),(16,68),(17,69),(18,70),(19,57),(20,58),(21,59),(22,60),(23,61),(24,62),(25,63),(26,64),(27,65),(28,66),(29,91),(30,92),(31,93),(32,94),(33,95),(34,96),(35,97),(36,98),(37,85),(38,86),(39,87),(40,88),(41,89),(42,90),(71,106),(72,107),(73,108),(74,109),(75,110),(76,111),(77,112),(78,99),(79,100),(80,101),(81,102),(82,103),(83,104),(84,105)], [(1,19),(2,20),(3,21),(4,22),(5,23),(6,24),(7,25),(8,26),(9,27),(10,28),(11,15),(12,16),(13,17),(14,18),(29,78),(30,79),(31,80),(32,81),(33,82),(34,83),(35,84),(36,71),(37,72),(38,73),(39,74),(40,75),(41,76),(42,77),(43,68),(44,69),(45,70),(46,57),(47,58),(48,59),(49,60),(50,61),(51,62),(52,63),(53,64),(54,65),(55,66),(56,67),(85,107),(86,108),(87,109),(88,110),(89,111),(90,112),(91,99),(92,100),(93,101),(94,102),(95,103),(96,104),(97,105),(98,106)], [(1,96,46,83),(2,97,47,84),(3,98,48,71),(4,85,49,72),(5,86,50,73),(6,87,51,74),(7,88,52,75),(8,89,53,76),(9,90,54,77),(10,91,55,78),(11,92,56,79),(12,93,43,80),(13,94,44,81),(14,95,45,82),(15,100,67,30),(16,101,68,31),(17,102,69,32),(18,103,70,33),(19,104,57,34),(20,105,58,35),(21,106,59,36),(22,107,60,37),(23,108,61,38),(24,109,62,39),(25,110,63,40),(26,111,64,41),(27,112,65,42),(28,99,66,29)]])

C14×C22⋊C4 is a maximal subgroup of
C24.Dic7  C24.D14  C24.2D14  C24.44D14  C23.42D28  C24.3D14  C24.4D14  C24.46D14  C23⋊Dic14  C24.6D14  C24.7D14  C24.47D14  C24.8D14  C24.9D14  C24.10D14  C23.44D28  C24.12D14  C24.13D14  C23.45D28  C24.14D14  C232D28  C23.16D28  C232Dic14  C24.24D14  C24.27D14  C233D28  C24.30D14  C24.31D14  D4×C2×C28

140 conjugacy classes

class 1 2A···2G2H2I2J2K4A···4H7A···7F14A···14AP14AQ···14BN28A···28AV
order12···222224···47···714···1414···1428···28
size11···122222···21···11···12···22···2

140 irreducible representations

dim111111111122
type+++++
imageC1C2C2C2C4C7C14C14C14C28D4C7×D4
kernelC14×C22⋊C4C7×C22⋊C4C22×C28C23×C14C22×C14C2×C22⋊C4C22⋊C4C22×C4C24C23C2×C14C22
# reps1421862412648424

Matrix representation of C14×C22⋊C4 in GL4(𝔽29) generated by

28000
0100
00230
00023
,
28000
0100
00280
0001
,
1000
0100
00280
00028
,
28000
01700
00014
0020
G:=sub<GL(4,GF(29))| [28,0,0,0,0,1,0,0,0,0,23,0,0,0,0,23],[28,0,0,0,0,1,0,0,0,0,28,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,28,0,0,0,0,28],[28,0,0,0,0,17,0,0,0,0,0,2,0,0,14,0] >;

C14×C22⋊C4 in GAP, Magma, Sage, TeX

C_{14}\times C_2^2\rtimes C_4
% in TeX

G:=Group("C14xC2^2:C4");
// GroupNames label

G:=SmallGroup(224,150);
// by ID

G=gap.SmallGroup(224,150);
# by ID

G:=PCGroup([6,-2,-2,-2,-7,-2,-2,672,697]);
// Polycyclic

G:=Group<a,b,c,d|a^14=b^2=c^2=d^4=1,a*b=b*a,a*c=c*a,a*d=d*a,d*b*d^-1=b*c=c*b,c*d=d*c>;
// generators/relations

׿
×
𝔽